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Problems of pulse guidance and motion correction are considered under conditions 
of indeterminacy on the basis of initial data and perturbations in the system of 
measurement (observation) of phase coordinates. Guaranteed unimprovable esti- 
mates of the minimax miss of the system are obtained in a linear approximation. 
Estimate of the optimum number of observations and of pulse control effects is 
indicated. By its statement and method of solution derivation this work is closely 
related to the investigations in [ 1 -  3]. 

1. G e n e r a !  s t a t e m e n t  o f  t h s  p z o b X s m .  Let the derivation of the control- 
led object from the specified path x ° (t) ~ 0 during the interval of t ime to ~ t ~ 0 
be defined by the equation of linear approximation 

dx/dt = A (t) x + B (t) u (1. 1) 

where x is an n-dimensional phase vector. A (t) and B (t) are continuous in [to, O] 
matrices of order n × n and n × r respectively, and u an r-dimensional control 
vector subjected to the restriction 

u = d U / d t ,  ~lldU(t)ll~<lx, I~-- eonst ~> 0 (1.2) 
to 

Here and below the symbol ~ q ~ denotes the Euclidean norm of vector q. Let the in- 
dicated deviation be assessed by the quantity r (Nx  ( t))  (r  (0) = 0), where N is a 
constant ( k × n )-matrix and r ( . )  is some function of phase coordinates specified on 
R(~). 

The aim of the control is to select action u (t) (1, 2) that would ensure the minimum 
miss r (Nx  (~))) of object (1, 1) on condition that the information on the initial state is 
limited to x (to) ~ X °. Region X ° is ~ J m e d  to be convex and closed, and may coincide 
with the complete phase space, 

To define more accurately the phase state of object ( 1, 1), we measure a certain m -  
dimensional vector y whose relation to the phase vector x is defined by the equation 
of linear approximation. 

y = G (t) x + ~ (t) (1. 3) 

where G(t) is a known continuous ( m × n)-matrix and ~(t) is the interference inthe 
observation channel. The models of interference ~(t)  am not a p r i o r i  specified 
but are subjected to restriction 

~ (~ (t)) ~< 0, to~<t~<O (1.4) 



2 B . 2  . A n z t r i ' t v ,  A . i  .Ku~'zl~ank:k[!  d G . S . S  m :t: ' 

where q~(-) is a specified function (e. g. (1.4))  that can be a restriction of the form 
a (t) II < ~ imposed on the magnitude of the interference). We assume that system 
(1. 1),(1.3) for u (t) = ~ (t) = 0 is entirely observable during any time inte~al  [t 0, 

t], t o ~ t ~  ~.  
The processing of signal Yt* ( ' )  (Yt*( ' )  -~ Y* (x), t o ~ x ~ t) (1.3),(1.4) re- 

ceived during the time interval to ~ "r ~ t ,  i. e. the solution of the problem of obser- 
vation makes it possible to establish a certain set X (t, Yt*(" )) C Rcn) which is the 
region where the phase vector z (t) of system (1. 1) remains during each current instant 
of time t. The ptogramedcontrol u (t) selected for the interval it, ~] must take into 
account all possible trajectories simultaneously released from X (t, Y t*( ' ) )  • This 
leads to the problem of control of a set of trajectories. The solutions of the problem of 
control and observation are in fact separated here: the observation process precedes that 
of control and the intervals of control and observation do not overlap. 

If, however, instant t of completion of observation is not fixed, the incompleteness 
of information about the initial state and on moving coordinates of the system leads to 
the problem of simultaneous optimization of the control and observation processes and, 
among other things, to the synthesis of these at the instant of transition from observation 
to control. 

The aim of this paper is to present an exact description, of the solution and to obtain 
a guaranteed unimprovable estimate of the miss, as well to estimate the number of pulse 
observations and control. Problems of this kind were considered in [1--  g], where various 
methods of approximate solution of the problem were proposed. 

2.  B a s i c  d e f i n i t i o n s  and  & l l t t m p t l o n l .  We call admissible the control 
defined by functions U (t) of limited variation that are continuous from the right along 
[to, ~] and satisfy restriction(1.2). We assume a p r i o r i  that the models of ~ (t) 
are piecewise continuous functions which for definiteness are assumed to be continuous 
from the right. We denote by '~t the set of all piecewise continuous and continuous 
from the right m-vector  functions in [to, ~] that satisfy condition (1. 4), and assume that 
8 is a subset of ~ ,  consisting of continuous functions. 

We denote by X (t, .) = X (t, l i t*( ' )  I U* (t)) of such, and only such, vectors 
z = z (t) which can obtain at instant t because of the trajectory z (x) of system (1. 1) 
for some z (to) E X ° and a fixed admissible control U* ( . )  (U (to) = 0) in [to, t] 
under condition that each of the functions z (x) paired with some model ~ (x) ~ ~1, 
to ~ x ~ t ,  generates signal y* (x) (by formula (1 .3) ) .  

We denote by X 6 (U ( . )  I X (t, .)) the set of such, and only such, vectors z = 
z (~) which can obtain at instant 0 because of the trajectory z (x) of system (1. 1) for 
z (t) ~ X (t, .) and fixed control U (x) in I t ,  e l .  The control U ( . )  is assumed 
here to be admissible. We assume that for t = ~ the set X 6 (U( . )  I ") is equal 
X (~, -) 7 t- B (~) p ,  where vector p must satisfy condition 

& 

IlPll~< ~ --  S 11 d U  * (~)11 
to 

We denote by Y (t,,  / I t*( ' )  I U* ( .))  the set of all pessible continuations into the 
interval [to, tx] of signal //t* (") obtained in [to, t] that are admitted by relation- 
s h i l l ( 1 . 1 ) - - ( 1 . 4  ) for the specified admissible control U* (x), to ~ x ~ t r  Each of 
such continuations is uniquely determined by specifying vector z (t) ~ X (t, .) and 
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function ~ (~) ~ ~1, t ~< ~ ~< h. 
We make the following assumption. 
A s s u m p t i o n  2. 1. (a) On R(~) function r( .)  is nonnegative, finite, and convex; 

(b) function (I) ( ' )  specified on R('n) is convex, finite, and has no recessional directions 
( [6], p. 86) and q) (0) < 0; (c) the cut-in {$ ] G (to) x ~ y* (to) - -  Q} __~ X °, 
where Q __- {x ] q) (x) ~ 0} is a set of the level of function ¢p ( . ) , takes  place at 
the initial instant to • 

Note that Assumption 2.1, b implies the boundedness of set Q. Furthermore, accord- 
ing to [6], 0 E int Q (int Q is the set of inner points of set Q). The support func- 
tion of set O is determined by formula (see [6], p. 136) 

V (x) = p (x I Q) - maxq q ' x  - -  cl ~(x) (2.1) 

~p (x) = inf {~q)* ()~lx) I ~, > 0} 

where q)* ( .)  is a convex function conjugate of q) ( .)  [6], and cl ~p ( .)  denotes the 
closure of function ~ (.) .  

$ . T h e  problem of correct ion with f ixed int tant  of observat ion 
c o m p l e t i o n .  The instant of completion of observation is taken as fixed. 

P r o b l e m  3. 1. We have to determine the quantity 

ri ° = mint:(.) m a x x r ( N x )  = r ° (tz, Yt,* ( '))  (3.1) 

x ~ x ~  ( u ( . ) l  x (t~, .)) 

and the related admissible optimum control U ° ('~) ---- U ° (~ ] Ya*(')), tl < '~ < O 

which provides the minimum in (3.1) on condition that the control U* ('~) for ~ ~ h 
and the instant tz, t o ~ t 1 ~ ~ are fixed. 

Note that for t z ---- 0 the selection of control U ° (~) in (3.1) reduces in conformity 
with the definition of set X ~ (U(.)  I X (t, .)) to that of choosing the jump of function 
U* ( ' )  at instant ~} q- 0. The following lemma defines the set X (t, -) in terms of 

L e m m a Assumption 2.1 is admitted, the support function of the convex 
compact set caused by the continuous variation of signal Yt* ( ')is defined 
by formula t 

max l ' . x = p ( l l X ( t , ' ) ) = i n f L ( . ) { S ( ' f [ - - d L ( T ) ]  -{- (3.2) 
x~X(t. .)  t, 

dL (~) [y* (~) - -  G (T) x (T; U* (.))])} 
t 

t ,  

where x (%; U* ( ' ))  is the solution of system (1. 1) with the boundary condition x ( t )=  
0; ? [. ] is a function determined by formula (2. 1), and S (t, %) is the fuadamental 
matrix of the conjugate system s" ----- - - sA  (t). The lower bound in formula (3.2) is 
taken over all m vector functions L( . )  of limited variation belonging to the set A (t, 
l) in (3.3). 

N o t e  3. 1. Lemma 3.1 remains valid if the lower bound in formula (3.2) is taken 
over all functions L( . )  ~ A( t ,  l)whose generalized derivative is of the form 

its support function. 
3 .1 .  If 
x (t, .) 
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n+2 
dL(T) __ Z a i S ( T - -  Ti) (3.4) 

dv 
i = l  

where (zi ~ R(m),Ti ~ [ t 0 ,  t], i ~ i  . . . . .  n -4- 2. If observatiom of signal Yt* ( ' )  
are notcarried out continuously but only on a certain set E ~ [to, t], the support func- 
tion of set X (t, .) is aho determined by formula (3.2), where the lower bound must 
be taken over all functions L ( . )  E A (t, l) of the fo1Tn (3.4) for Tt ~ E.  Hence 
the set X (t, -) can be defined by formula 

X (t , . )  = [-] { x [ G ( ~ ) S ( t ,  ~ ) x E y * ( T ) - - G ( ~ ) x ( ' ~ ;  U* ( . ) ) - -  Q} (3.5) 

The proof of Lemma 3.1 and of the stat~ ment in Note 3.1 may be obtained by using 
the method described in [7] and the result in [8]. 

If Assumption 2. 1, c is not satisfied, the set is determined by the relationship X (t, 
• ) = X (t, -) N S (to, t) X °, where X (t, .) is a set that is determined in confor- 
mity with (3.2), (3.5). 

From Lemma 3.1 and Note 3.1 we obtain the foUowing statement. 
L e m m a  3. 2. If signal Yt* ( ' )  is specified, then for any number 8 ~ 0 and vec- 

tor l ~ R ( n )  it is possible to find a collectiou of points {Ti} ~___ [to, t] with i ---- l ,  
.... n @ 2, where n is the dimension of system (1. 1),such that 

O ( / I X . ( t ,  . ) ) ~ 9 ( l  I X ( t ,  -)) + 8  (3.6) 

where X (t, .) is the set obtained by continuous observation, and X .  (t, .) is a set of 
form (3, 5) obtained by discrete observations at points {Ti }. 

Note that formula (3.2) can also be written as 

p ( l  I X ( t ,  .)) = inf {X(c, l) + c  I c ~ R  (x)} (3.7) 
t 

(c, l) ----- infL(.) S "; [ -  dL (X)] (3. 8) 

te 

In (3.8) the lower bound is taken over all functions of limited variation Z (-) 
A (t, l) for which t 

dL  ('r) (y* ('r) - -  G (T) x (T; U* ( . ) ) ) =  c 
t ,  

Note that when the interference ~* (~) in signal Yt* (') belongs to class E, i .e .  is 
a continuous function, then the lower bound in (3.8) is reached for any c on function 
L (.) of form (3.4) in which n -~- i has been substituted for n -{- 2 .  It is also possible 
to show that when 

y* (x) -- G(x) (S (t,x) p - ~  x(x; U* (-))) E i n t  O, t o ~ x ~  t 
then for some ~ E R (n) the lower bound is reached in fccmula (3.2) (and a l~  in (3.7)). 
Hence in shuch cases we have, instead of inequality (3.6), the equality p (l I X, (t,.)) ---- 
p (z I x (t,.)).  

Let us revert to the problem formulated at the beginning of Sect. 3. T r a n s ~ g  
m i n u ( . )  and m a x =  in formula (3.  1) and taking into account the definition of set 
X ~ ( U ( . )  I X (t,  . ) ) ,  we obtain formula 

r t  ° = r ° (tt,  Yt~* ( ' ) )  = max  {--  !~* max  ~ s (T; l) B ('c) ~ -}- (gone]) (tl; l)} ( 3 . 9 )  
l~___.R(k) tt~'¢~8 
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] (tz; l) = p (s (tx; l) I X (t , ,  .))  - r*  (z) 
t, 

Ix* = I x -  S IIdU (~)H > 0 
to 

where s (x; l), t I ~ x ~ ~ is the solution of system 9 --  --sA (t) with the bound- 
ary condition s (0) = l 'N. Function r* (l) is convex on R (k) and conjugate to r (l) 
[6], and (cone / ) ( l )  denotes the concave envelope of function / (l) on R(~). 

The following theorem is valid. 
T h e o r e m 3.  1. An optimum control U ° (x) for Problem 3, 1 always exists and 

satisfies the principle of minimum 

t, tt t ,  

where /o is the vector for which maximum is reached in formula (8, 9). Moreover the 
optimum control U ° (x) can be presented in the form 

atr* 00 
u ° (~) = ~ - Y, Ix,8 (~ - ~.,), Y, U Ix, II < Ix* (3. u )  

i=l i = l  

x~E[t,,~], Ix~EH(O, i=i ..... k 

where k is the number of rows of matrix N. 

Note 3 . 9 .  If matrix N = n '  (row-vector),i.e. k = | and r ( N z )  ----- I n 'z  1, 
1 

(cone D (t,; l) = bl, 0 > l > --  , if  a -t- b % 0 

~ ,  I Z l >  

I "< I }  ,, o+ >0 
- ~  I ~ 1 >  ' 

a = p ( n ' S ( t  1, 0) IX ( t1 ,  ")), b = p ( - - n ' S ( t l ,  0) [ X ( t z ,  ")) 

Formula (3.9) can be rewritten as 

t ~  / 

The optimum control U ° (x) has in this ease only one jump. 
Let us ehome vector q ~ R(~) so that 

Ix* max  II s (x; z) g (x) n > l'q > (cone/') (ts; l), Vl C3. 18) 

where 1-, ° is determined by formula (8.9).  Vector q' that satisfies the inequality (8.18) 
must necessarily exist. On the other hand a direct computation will show that vector q 
is the solution of the following extremum problem g (l) = ( - - ]  (t,; l)) *: 

(i ) r i O = g ( !  N$(x'~)B(x)dU°(x))=mingv(.) NS(x ,O)B(x )dU(x )  (8.14) 

• q = - -  j N S  (x, 0 )  B (~) dU ° (~) (a. 15) 

t t  
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We have the following theorem. 
T h e o r e m 3.  2.  If vector  q ~ R (h') satisfies inequality (3.13),  then the control 

U ° (x) that resolves problem (3.15) is opt imum for Problem 3.1.  This control also 
solves problem (3.14),  and any solution of the lat ter  is a solution of problem (3.1) .  

Here (3, 14) can be considered as a problem of minimizat ion of function g (Nx (0')) 
(3.15) at the final state x (~) of system (1. 1) for a known init ial  state x (tl) = 0. 
Theorem 3.2 states that  problems 3 .1  and (3.14) are equivalent.  

Note that the quantity rt ° defined by formula (3, 9),(3.14) is the guaranteed result of 
control for continuous observation of signal (1. 3) in [to, t 1] and for an exact  es t imate  
of region X (t 1, .). If  observations are carried out at discrete instants of t ime or when 
region X (t 1, .) is only approximately known, the guaranteed result rl  ° is less satis- 
factory. 

Let us consider in greater detail  one method of est imating region X (fi ,  .) .  ActuaLly, 
we have to es t imate  region NS (tx, ~)  X ( t l ,  o) in R (k), since it is this region that 
appears in formula (3.9).  If perturbations ~ ( . )  in signal (1. 3) are fairly small ,  region 
X (t 1, .) lies in some reasonably small  neighborhood of the affine set x*  (tl) -t- 
K o r  G (tl) ( K e r  G = {xlGx = 0}) ,  where x* (tx) is the value of the phase vec-  
tor of system (1. 1) that  obtains at instant t~. with this in mind it is expedient  to esti- 
mate  region NS ( t  x, ~ ) X  (fi ,  .) by a k -d imens iona l  rectangle I I  oriented with re- 
spect to the orthogonal axes l~, . . . ,  la  so that the support functions of sets I I  and 
NS ( t l ,  ~)  X (t  1, -) coincide on unit vectors -+-l~, i = t ,  . . . , k , or differ only 
slightly from these. Vectors /x, • • . ,  lh are to be chosen so that the first ] vectors 
form the basis in the subspace NS (t 1, ~) K e r  G (tx) and the remaining k - -  ] vec-  
tors supplement the former to the orthonormal basis in R(~). This construction shows 
that the direction of vectors ll, . . . ,  la  chosen in this manner depends only on the 
instant of t ime t x , while being independent of the availabil i ty of signal Ytt (") and of 
the configuration of region X ( t l ,  .) .  

We introduce the notation 

] ( t l ;  li) ~ p ( s ( t l ;  li) I X ( t 1 ,  .)) = c~, / ( t l ,  - - l l )  = c~+i i : i ,  . . . . k  

and assume that the unit vectors l i have been chosen by the method indicated above. 
It is not difficult to verify that vectors l t and the quantities ¢1 uniquely define the 

k-  dimensional rectangle 

II . . . .  L I I , + L b ,  L=[lx ,  ,l,], b----( c1-%+1~2 ' "'" ' ck--c'k)2 

{ ciq-%+' k} 
I I .  = a ~ R ( ~ ) l  a = ( a l , . . .  , a k ) ,  la~ I ~ < v ,  = - - - - T ' - -  ' ~ = i ,  . . . ,  

where L is a matrix composed of column-vectors  It and l-I .  is the k-d imens iona l  
rectangle.  

Taking the above into consideration, we substitute for (3.9)  the approximate formula 

ra ° - -  r ° (tl ,  Yt,* (")) = m a x  {I'b -- Ix* m a x  II s (x; L'I) B (x) I1-1- (cone p) (l [ I I . )  

r (z) = IlZll, r *  (z) = + o~,  I lZ l l>  

Function (cone  p) (l I H . )  consists of k (k - -  i )  -}- t pieces of smooth surfaces, 
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and in the k-dimensional rectangle 

I z, I..< is-ffi, 
~ ¢  a 

z = l  
is constant and equal ,.~. 

Below we present the statement on the number of observations required for solving 
problem (3.16). 

T h e o r e m 3 . 3 .  For any number ~ ~ 0 it is possible to indicate not more than 
2k (n + 2) points {xi} ~ [to, tz] such that for the set X . ( t z , ' )  obtained by observ- 
Lug signal (1. 3) at these points, the result f i  ° of the solution of the problem (3.16) will 
satisfy the inequality f l  ° ~ rl  ° + e, where G ° is obtained in the solution of problem 
(3.16) for the set X (tz, -) by continuous observation of signal (1.3) in [to, tz]. 

It is not difficult to obtain the proof of Theorem 3.'3 by using Lemma 3.2 and taking 
into account the continuous dependence of the quantity (cone p) (l [ rl) on parame- 
ters ct, i = J,  . . . ,  2k, which in turn implies the continuous dependence of rl ° 
(3.16) on these parameters. 

4. The prob lem of c o r r e c t i o n  with t y n t h e t i t  at the ins tant  of 
c o m p l e t i o n  of o b l e t v a t l o n o  Let us consider the following problem. 

P r o b l e m  4.  1. Determine the quantity r2 ° ---- r ° (t °, !/t °* ( .))  and the related 
admissible optimum control U ~ (x) = U °° (x ] yto ( . )) ,  t ° ~ x .~  0 ,  which provides 
the minimum in (3.1) on condition that the previously specified admzsszble control 
U* (x) (U* (to) = 0), t 0 ~ z ~  O, obtains in [to, t°].  Here t ° = t ° ( y t ° * ( . ) )  
is the earliest instant of t ime for which 

r ° ( t ° , g t . * ( . ) ) ~ <  min s u p r ° ( t ,  g t ( . ) ) , g t . ~ Y ( t ,  y t o * ( . ) [ U * ( . ) )  (4.1) 
t°~<t~<a yt(. ) 

In Problem 4. 1 the instant of correction is not specified a p r i o r i .  On the contrary, 
it has to be synthesized according to condition (4. 1) on the basis of incoming informa. 
tion. After t ° = t ° (yto* ( .))  has been determined, Problem 4. 1 reduces to Problem 
3.1 for t t ----- t °. We note in connection with this that in synthesizing that instant of 
t ime in Problem 4. 1 it is necessary to compute the quantity r ° ( t ,  Yt (")) (3.1) for va- 
rious values of t. The quantity r ° (t, Yt ( ' ) )  may be determined either exactly by 
formula (3.9) or approximately by formula (3.16) (for r (l) = ]lt II). In either case 
r2 ° (4.1) is the guaranteed result of control, and in the worst case for tz • t ° we always 
have rl  ° ~ r2 °. If, however, t 1 ~ t °, the strict inequality rl  ° ~ r ° 2 is satisfied. 

Let Us now consider the question of existence of instant f (lit* (")). For this we need 
to take into acccmnt one property of the linear completely observable systems of the 
form (1.1) ,(1.3)  ( U  ( . )  = 0). 

P r o p e r t y  A. For any instant t ~ to and any signal (1.3) that is obtained in the 
interval [to, t], as well as for any continuous extension ya (x) E Y (0,  yt* ( . )  [ 0) 
of signal yf* ( . ) ,  the set X (%-) is in the meaning of Hausdorff's principle continuous 
at Point t from the right. 

Without going into the details of this property, we note that for G (x) ~--- G (const) 
system (1. 1) possesses property A' 

L e m m a 4.  1. Let Property A be satisfied. Then there exists the smallest instant 
of t ime t ° for which condition (4. 1) is satisfied. 

P r o o f .  Let us fix some obtained y* (z), t o ~ ,  ...< 0 of signal (1.3), and set 
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t* = inf {t°), where {t °} is the set of instants t ° which for Yr.* (x) _~ y* (t --1- x), t o --  
t ~ x ~ 0 satisfy inequal i ty  (4 .1) .  Let us now show that at instant t* inequal i ty  (4 .1)  
is satisfied. In fact ,  specifying number s > 0 and assuming that  t > t* , we can select  

for each  t ° ~ {t°}, t* < t ° < t  such lit ( ')  ~ Y ( t ,  Yto* ( ')1 U* ( . ) ) t ha t  

- 8 + r ° (t °, Yt.* (')) < r° it ,  Yt (")) (4.2) 

in conformity with inequal i ty  (4 .1) .  Taking into consideration the continuity of in ter -  
ference ~* (.) and of control  U* ( . ) ,  and al lowing for the Property A, we find from for- 
mulas  (3 .9)  and (3.18)  that  function r ° (t, Yt* ( ' ))  is semicontinuous from below a tpo in t  
t* when t tends to t* from the right. Passing in inequal i ty  (4, 2) to the l imi t  for t ° - .  

t* + 0, we obtain - -  8 + r ° (t*, Yr.* (")) ~< r° it, Yt ("))" Owing to the arbitrariness of 
the select ion of the number e and of the instant t ~> t*, we can consider that the va l i -  
di ty of inequal i ty  (4. 1) at instant t* is established. 

The reasoning of Sect.  4 is summarized by the following theorem. 
T h e o r e m  4 .  1.  The solution of Problem 4. 1, i . e .  the pair {t ° (Yt** ( '~) and 

U°° (" I Yt** ( ' ) )  } satisfies condit ion 

sup  m a x  r ( N x  (0)) = m i n  sup  m a x  r ( N x  (0))  (4 .3)  
y~(.) x(@) {t,U(.)~y~(.) x(O) 

y o ( . ) E Y ( O ,  Y t * ( ' )  I U * ( ' ) ) ,  x ( O ) ~ X ° ( U ( . ) l X ( t ,  Y t * ×  

( ') I u*  (.))) 

The max imum in the le f t -hand part of equal i ty  (4 .3)  is taken for t : t ° and U ( . ) =  
Uoo. 

5 .  I E x a m p l s ,  Let us consider system (u = dU / dt) 

• x" = x~, ~2" = u, 0 ~ < t ~ < O ,  ~ldU(x) l~<lX (5.1)  
0 

We observe the signal 

y(~) = xj(x)-~- ~(~), ]~ (x )  I ~ A ,  A =  const (5 .2)  

The deviat ion of mot ion x it) from the specif ied z ° it) _~ 0 is amemed by the quanti ty 

r (Nz  (t)) = I zl (t) I- We impose in the genera l  case the addit ional  restriction on the 
motion of systefia (5 .1)  by specifying that at the f inal  instant of  t ime  the coordinates 
must satisfy the condit ion 

I ~ ( 0 )  l ~ v ,  v = c o n s t  (5 .3)  

Problem 3 . 1  for system (5 .1)  with a l lowance for restr ict ion (5 .3)  is formulated as 
follows: de te rmine  the min imum number a ° and the op t imum control U ° (x), t ,< x, 
such that  the inequal i t ies  I xl (0) I ~ c~° and I xz (0) [ ~ v are satisfied by al l  vectors 
z (0) ~ x ~ ( u  ° (.) I x (t , .)).  

The numer ica l  solution of the problem is carr ied out for ~x = 6, v = 8, A = 2, 0 = 2, 

X ° = {(zz, x2) I - -  t4  ~ z~ ~ - -  6} U* (x) ~ 0, and the s imulated signal y (x) and inter-  
fea~nce ~ (x) are specif ied in the form (Fig. 1) 
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y* (~) = 

- -8  + 4 ~ ,  0 { ~ < 0 . 5  

- -9q-4~ ,  0 . 5 { ~ < 1 . 0  
--12 + 4~, 1 . 0 ~  • < 1 . 5 '  

- -8  --F 4-c, i , 5 ~ T  ~ 2.0 

~* (T) = 

2, 0 ~ T < 0 . 5  

t ,  0.5 ~ < i . 0  

- - 2 ,  i.O -.,<'r ( t .5 

2, i .5 ,..< 1: g 2.0 

(5 .4)  

The regions X (t , . )  which correspond to the continuous observation of signal  (5 .4)  
( formula (3 .5 )  is the most convenient  for computing these) are represented by polygons. 

- 2 ~  ,, 
/ 

/ 

/ 
/ 

/ , /  

I 
I 

I 

Fig. 1 

$ 

# 

lo 0 

"7 
-~-~o 8 -6  z~ 

Regions X (t , . )  in Fig. 2 denoted by numerals  1-6 
rela te  to imtant-~ of t ime  0 .5--0 ,  0.5, i - -0 ,1 .0 ,  

1 .5- -0 , I .5 ,  respect ively .  The first two sets are re-  
presented by paraDelograms and the last three by 
izTegular polygom. At instant t = i .5  region X (t , . )  
contracts abruptly to the point at coordinates 
( - -  4,4). Note that  for computing the set X (0.5-- 
0, .)  i t  is sufficient to make only two observations 

of signal ( 5 . 4 ) ( n a m e l y  at t ~ 0 and t = 0.5--0) ,  
for set X (0.5,.)  three measurements  (a t  t = 0, 
t = 0 .5- -0  and t =0.5) are necessary, and for the 
sets X ( i - - 0 , . )  and X ( i , . )  four and five measure-  

ments (a t  t = 0, t = 0 ,5--0 ,  t = 0,5 and so on), 
respect ively,  axe required. 

Let us solve problem (3.1) ,  (5 .1)  for instant t x = 
0,5--0. Ignoring restrictions (5 .3 )  and using formula 

(3 .12) ,  we obtain n ° = gmin = I/~" We further note 
that the control u ° (~)----- - - 4 5  (¢ - -  2) solves the prob- 
l em for g° ---- i4  (v = 8). Thus the min imum with 
respect to xz neighborhood of zero is g° = 14 for 
tl = 0 . 5 - - 0 .  Similar  computat ions for tl ---- 0.5 

8 

\ 

k 
0 f 

/ 

/ 
/ 

%" 

Fig. 2 Fig. 3 

y ie ld  cz ° = i2  for the control  u ° (~) ---- 28 (1: - -  t)  - -  48 (1: - -  2). I t  should be noted that 
the problem of transfering sets X (0 .5- -0 , . )  and X (0.5,.) to the zero neighborhood that 



1 0  : . l . l ~ l i z ~ I i ~ , ~  , / ~ . . K u r ' ~ ' I  -1 : : '14:  i ( ; . ~ . L : ,  ¢ r : ' 

is m i n i m u m  with respect  to x~ is e q u i v a l e n t  to the p rob lem of transfer to the same neigh. 

borhood of  the segments  which connec t  ve r t i ces  A - -  B and A '  - -  B of  polygons 

X (0 .5 - -0 , - )  and X (0.5, .)  (see Fig. 2) .  

Let  us cons ider  now Problem 4 . 1 .  First, we point  out  that  one must not  c o m p l e t e  the 

observat ion ea r l i e r  than at t = t .  Here ,  even  in the worst case  of  obta ined  signal  y (x), 

x > j  t , a further observat ion  y ie lds  a lower  va lue  for c~ °. Thus, solving Problem 3 . 1  

(C 5. 1 . ) )  for h = t and cont ro l  u ° (x) = 56 ~ - -  1) - -  5 (x - -  2) we find that  c¢ ° : 3 . 

In the  case  of  the "wors t '  s ignal  y (x) = - -  i2--}- 4x. x ~ i region X (t , . )  that  corre-  

spends to that  s ignal  is ob ta ined  by a s imple  t ransformat ion of  set X ( l , . )  on the basis of  

system (5 .1 ) .  Fo rmula  (3 .12)  imp l i e s  that  for al l  t, t ~ t ~ 2 we have  a ° ~ r 1 ~ 3 . 

Thus t ° ---- t (y* (.)) --'-- i and the  cont ro l  u °* (x) ----- 58 (x - -  t)  - -  5 (x - -  2) provide  the 

solut ion of  p rob lem (4 .1 )  for system ( 5 . 1 ) , ( 5 ,  2) for a spec i f ic  s ignal  (5 .4 ) .  The  m i n i -  

m u m  va lue  of  ~° that  can  be  guaranteed  on the basis of i ncoming  in format ion  (5 .4 )  is 

e q u a l  three .  The  con t inua t ion  of  observat ion  beyond t = t would in the worst case  of  

t = t .5  y i e ld  ~° = 5. In the case  of signal  (5 .4 )  obta ined  at instant  t = t .5  region 

X ( t , . )  would con t rac t  to a point,  and the control  u ° (x) = 48 (x - -  i .5)  would yie ld  

a°  = 0 (Fig.  3 ) .  
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